Li a discussão que você mencionou. É aplicável ao PostgreSQL, uma vez que é permitido criar a função agregada definida pelo usuário usando o SQL no PostgreSQL, mas não permitido no SQL Server. Usar CTE recursivo é uma maneira viável no SQL Server, mas eu percebo que a maneira CTE pode incorrer mais varredura de tabela do que funções de janela. Então eu faço este post para perguntar se é possível calcular a média móvel exponencial usando a função de janela do SQL Server 2012, assim como calcular a média móvel simples. Ndash xiagao1982 Apr 14 13 at 2:53 Primeiro, você calcula o EMA (SMA (x)) em vez do EMA (x). Em segundo lugar, seu quotsmoothing constante é realmente o valor beta na minha fórmula, não o alfa. Com essas duas alterações o SQLFiddle se parece com isto: sqlfiddle6191921 No entanto, ainda há uma pequena diferença entre o resultado real eo resultado esperado. Gostaria de voltar e ver se a sua EMA definição corresponde ao que eu conheço. Ndash Sebastian Meine May 7 13 at 13:46 Eu só olhei para o formulário na planilha que você anexou e está longe da definição padrão EMA. Minha fórmula calcula a média móvel exponencial das últimas dez linhas. A planilha primeiro calcula a média padrão nas últimas dez linhas e, em seguida, a média móvel ponderada exponencialmente sem restrições sobre todas as médias. Isto segue o formulário aqui: en. wikipedia. orgwikiEWMAchart ndash Sebastian Meine maio 7 13 em 13: 52O defeito principal em seu programa é que o cálculo recursive é incorreto. Para calcular a média, você tem que obter a soma do valor atual e os valores restantes. Então divida essa soma pelo número de valores. O número de valores é num. O valor atual é o que calculatenumber () retorna. A soma dos valores remanescentes é num-1 multiplicada pela média dos valores remanescentes. A média dos valores restantes é calculada fazendo uma chamada recursiva para a média (). Assim, escrevemos o seguinte: Um programa completo usando essa função pode parecer com isto: Note que esta não é uma maneira muito boa de calcular a média porque você perde precisão toda vez que você divide a soma atual por num. Quando essa média é multiplicada novamente à medida que a chamada recursiva retorna, os dígitos significativos que você perdeu na divisão não são restaurados. Você está destruindo informações dividindo e multiplicando a soma. Para maior precisão, você deseja manter o controle da soma como você percorrer os elementos, em seguida, dividir no final. Outro ponto a considerar é o que se entende por uma média móvel. O que implementamos acima não é uma média móvel, mas uma média fixa. É a média de uma janela fixa de elementos. Se você mover a janela por uma posição, você tem que começar tudo de novo e calcular a soma novamente. A maneira correta de implementar uma janela em movimento é manter o controle de todos os elementos na janela. Quando você desloca a janela uma posição para a direita, você remove o elemento mais à esquerda da janela e subtrai seu valor da soma, em seguida, adicione o novo elemento mais à direita para a janela e adicione seu valor à soma. Isso é o que torna uma quantia em movimento. Dividindo a soma móvel pelo número de elementos dá-lhe a média móvel. A maneira natural de implementar uma janela em movimento é com uma fila porque você pode adicionar novos elementos à cabeça e pop elementos antigos da cauda. Respondeu Nov 22 14 at 17: 44Exploring O Exponentially Weighted média móvel A volatilidade é a medida mais comum de risco, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para medir o risco futuro.) Usamos os dados reais do estoque do Google para computar a volatilidade diária com base em 30 dias de dados de estoque. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel exponencialmente ponderada (EWMA). Histórico vs. Volatilidade implícita Primeiro, vamos colocar esta métrica em um pouco de perspectiva. Há duas abordagens gerais: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é um prólogo que medimos a história na esperança de que ela seja preditiva. A volatilidade implícita, por outro lado, ignora a história que resolve pela volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que implicitamente, uma estimativa consensual da volatilidade. Se focarmos apenas as três abordagens históricas (à esquerda acima), elas têm duas etapas em comum: Calcular a série de retornos periódicos Aplicar um esquema de ponderação Primeiro, nós Calcular o retorno periódico. Isso é tipicamente uma série de retornos diários onde cada retorno é expresso em termos continuamente compostos. Para cada dia, tomamos o log natural da razão dos preços das ações (ou seja, preço hoje dividido pelo preço de ontem, e assim por diante). Isso produz uma série de retornos diários, de u i para u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando a Volatilidade para Avaliar o Risco Futuro), mostramos que, sob algumas simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Note que isto soma cada um dos retornos periódicos e depois divide esse total pela Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos quadrados. Dito de outra forma, cada retorno ao quadrado é dado um peso igual. Portanto, se alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples é algo como isto: O EWMA Melhora na Variância Simples A fraqueza desta abordagem é que todos os retornos ganham o mesmo peso. O retorno de ontem (muito recente) não tem mais influência na variância do que nos últimos meses. Esse problema é corrigido usando-se a média móvel exponencialmente ponderada (EWMA), na qual retornos mais recentes têm maior peso na variância. A média móvel exponencialmente ponderada (EWMA) introduz lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno ao quadrado é ponderado por um multiplicador da seguinte forma: Por exemplo, RiskMetrics TM, uma empresa de gestão de risco financeiro, tende a usar um lambda de 0,94 ou 94. Neste caso, o primeiro Mais recente) é ponderado por (1-0.94) (. 94) 0 6. O próximo retomo ao quadrado é simplesmente um lambda-múltiplo do peso anterior neste caso 6 multiplicado por 94 5.64. E o terceiro dia anterior peso é igual a (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser menor que um) do peso dos dias anteriores. Isso garante uma variância que é ponderada ou tendenciosa em direção a dados mais recentes. (Para saber mais, consulte a Planilha do Excel para a Volatilidade do Google.) A diferença entre simplesmente volatilidade e EWMA para o Google é mostrada abaixo. A volatilidade simples pesa efetivamente cada retorno periódico em 0.196, como mostrado na coluna O (tivemos dois anos de dados diários sobre os preços das ações, ou seja, 509 retornos diários e 1509 0.196). Mas observe que a Coluna P atribui um peso de 6, então 5.64, então 5.3 e assim por diante. Essa é a única diferença entre a variância simples e EWMA. Lembre-se: Depois de somarmos toda a série (na coluna Q) temos a variância, que é o quadrado do desvio padrão. Se queremos a volatilidade, precisamos nos lembrar de tomar a raiz quadrada dessa variância. Sua significativa: A variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para detalhes). Aparentemente, volatilidade Googles estabeleceu-se mais recentemente, portanto, uma variância simples pode ser artificialmente elevada. A variação de hoje é uma função da variação dos dias de Pior Você observará que nós necessitamos computar uma série longa de pesos exponencial declinando. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que a série inteira convenientemente reduz a uma fórmula recursiva: Recursivo significa que as referências de variância de hoje (ou seja, é uma função da variação de dias anteriores). Você pode encontrar esta fórmula na planilha também, e produz o mesmo resultado exato que o cálculo de longhand Diz: A variância de hoje (sob EWMA) iguala a variância de ontem (ponderada por lambda) mais o retorno ao quadrado de ontem (pesado por um lambda negativo). Observe como estamos apenas adicionando dois termos juntos: ontem variância ponderada e ontem ponderado, retorno ao quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como o RiskMetrics 94) indica um declínio mais lento na série - em termos relativos, vamos ter mais pontos de dados na série e eles vão cair mais lentamente. Por outro lado, se reduzimos o lambda, indicamos maior decaimento: os pesos caem mais rapidamente e, como resultado direto da rápida decomposição, são usados menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar com sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque ea métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variância historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variância simples é todos os retornos obter o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo é diluído por dados distantes (menos relevantes). A média móvel exponencialmente ponderada (EWMA) melhora a variância simples atribuindo pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso a retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite o Bionic Turtle.) Artigo 50 é uma cláusula de negociação e liquidação no tratado da UE que delineia as medidas a serem tomadas para qualquer país que. Beta é uma medida da volatilidade, ou risco sistemático, de um título ou de uma carteira em comparação com o mercado como um todo. Um tipo de imposto incidente sobre ganhos de capital incorridos por pessoas físicas e jurídicas. Os ganhos de capital são os lucros que um investidor. Uma ordem para comprar um título igual ou inferior a um preço especificado. Uma ordem de limite de compra permite que traders e investidores especifiquem. Uma regra do Internal Revenue Service (IRS) que permite retiradas sem penalidade de uma conta IRA. A regra exige que. A primeira venda de ações por uma empresa privada para o público. IPOs são emitidos frequentemente por companhias menores, mais novas que procuram o. O cientista eo guia dos coordenadores ao processamento de sinal digital por Steven W. Smith, Ph. D. Uma grande vantagem do filtro de média móvel é que ele pode ser implementado com um algoritmo que é muito rápido. Para entender esse algoritmo, imagine passar um sinal de entrada, x, através de um filtro de média móvel de sete pontos para formar um sinal de saída, y. Agora, veja como dois pontos de saída adjacentes, y 50 e y 51, são calculados: Estes são quase os mesmos pontos de cálculo x 48 a x 53 devem ser adicionados para y 50 e novamente para y 51. Se y 50 já foi calculado , A maneira mais eficiente de calcular y 51 é: Uma vez que y 51 tenha sido encontrado usando y 50, então y 52 pode ser calculado a partir da amostra y 51, e assim por diante. Depois que o primeiro ponto é calculado em y, todos os outros pontos podem ser encontrados com apenas uma única adição e subtração por ponto. Isso pode ser expresso na equação: Observe que esta equação usa duas fontes de dados para calcular cada ponto na saída: pontos a partir da entrada e pontos previamente calculados a partir da saída. Isso é chamado de equação recursiva, o que significa que o resultado de um cálculo é usado em cálculos futuros. (O termo recursivo também tem outros significados, especialmente na informática). O Capítulo 19 discute uma variedade de filtros recursivos em mais detalhes. Esteja ciente de que o filtro recursivo médio móvel é muito diferente dos filtros recursivos típicos. Em particular, a maioria dos filtros recursivos tem uma resposta de impulso infinitamente longa (IIR), composta de sinusoides e exponenciais. A resposta de impulso da média móvel é um pulso retangular (resposta de impulso finito, ou FIR). Este algoritmo é mais rápido que outros filtros digitais por várias razões. Primeiro, há apenas dois cálculos por ponto, independentemente do comprimento do kernel do filtro. Segundo, a adição e subtração são as únicas operações matemáticas necessárias, enquanto a maioria dos filtros digitais requerem multiplicação demorada. Em terceiro lugar, o esquema de indexação é muito simples. Cada índice na Eq. 15-3 é encontrado adicionando ou subtraindo constantes inteiras que podem ser calculadas antes do início da filtragem (isto é, p e q). Em seguida, todo o algoritmo pode ser realizado com representação de inteiro. Dependendo do hardware usado, inteiros podem ser mais do que uma ordem de magnitude mais rápida do que ponto flutuante. Surpreendentemente, a representação de números inteiros funciona melhor do que o ponto flutuante com este algoritmo, além de ser mais rápido. O erro round-off de aritmética de ponto flutuante pode produzir resultados inesperados se você não for cuidadoso. Por exemplo, imagine um sinal de 10.000 amostras sendo filtrado com este método. A última amostra no sinal filtrado contém o erro acumulado de 10.000 adições e 10.000 subtracções. Isso aparece no sinal de saída como um deslocamento à deriva. Os inteiros não têm esse problema porque não há nenhum erro de arredondamento na aritmética. Se você deve usar ponto flutuante com este algoritmo, o programa na Tabela 15-2 mostra como usar um acumulador de dupla precisão para eliminar essa deriva.
Comments
Post a Comment